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Abstract

The ability to automatically learn to speak through observa-
tion and dialogue without relying on labeled training data is
essential for intelligent robots or agents to flexibly and ex-
pressively talk to humans on an equal footing. Previous meth-
ods have demonstrated that automatic spoken language ac-
quisition becomes possible by combining unsupervised and
reinforcement learnings with end-to-end neural networks.
However, such utterances were a simple playback of seg-
mented wave sounds, which lacked flexibility in pronuncia-
tion. This work introduces WaveGrad speech synthesizer as
the agent’s speech organ by embedding its optimization in
the self-supervised learning framework. Experimental results
show that WaveGrad gives the same speaking performance
as the conventional method in a steady environment and out-
performs it when the background noise changes, proving its
ability to adjust its pronunciation for smoother communica-
tion.

Introduction

The performance of current speech recognition systems has
reached the human level in some tasks (Xiong et al. 2017),
and the quality of synthesized utterance has reached a level
where we cannot easily distinguish an authentic utterance
from a synthesized one (van den Oord et al. 2016; Shen et al.
2018). However, a machine’s conversation ability is still sig-
nificantly inferior to that of humans, and the machine lacks
the power to handle open situations by extending its lan-
guage knowledge on the fly (Taniguchi et al. 2016). Such
an ability is fundamental for humanoid robots that coexist
with humans to have flexible communication in individual
circumstances, plant operating agents that collaborate with
human operators to resolve unexpected problems, and oth-
ers.

To fill the gap, speaking agents need a self-supervised
learning mechanism to learn new words from speech con-
versation by creating a closed learning loop in human soci-
ety. Learning a new word involves 1) identifying the speech
segments corresponding to the word, 2) associating it with
its meaning, 3) modeling the effect of using it, and 4) syn-
thesizing its pronunciation. Realizing and improving such
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learning algorithms will also greatly contribute to reveal-
ing the mechanism enabling human beings to acquire spo-
ken language from scratch, which is one of the fundamen-
tal issues in cognitive science as well as in artificial intel-
ligence (Dupoux 2018; Kuhl 2004). Skinner was the first
researcher who considered the question from an engineer-
ing perspective in the 1950s (Skinner 1957). He explained
that children acquire language based on behaviorist rein-
forcement principles by associating words with meanings.
However, it remained at the conceptual level at that time.

Recently, Gao et al. proposed an end-to-end deep neu-
ral network-based agent, which could learn to pronounce
speech commands to move around in a simulated 3D
space (Gao et al. 2020) !. For the speaking agent, execut-
ing an action was to pronounce an utterance. Theoretically
thinking, a self-learning speaking agent is made possible by
applying reinforcement learning to a neural network that has
a speech synthesizer as the output and pattern recognizers
as the inputs. However, the difficulty is how to handle the
high dimensional continuous action space of the utterance
waveform obtaining convergence in realistic time. Assum-
ing 8kHz sampling frequency, the dimension of the action
space of 1.0 second short utterances is already 8,000. The
approach in (Gao et al. 2020) was to perform unsupervised
word learning to produce a sound dictionary and use it as
a discrete action space for the speaking agent. Zhang et al.
extended the system by introducing a vision-based focus-
ing mechanism based on unsupervised cross-modal repre-
sentation learning, improving the learning efficiency (Zhang
et al. 2020). To the best of our knowledge, these were the
first systems jointly supporting the four aspects of the self-
supervised new word learning of the segmentation, meaning
association, effect modeling, and the pronunciation without
relying on any pre-trained supervised models.

While Gao’s and Zhang’s systems work in an end-to-end
manner, one limitation was that the agent’s utterance was
only based on selecting and replaying an element in the
sound dictionary; thus, it lacked the mechanism to modify
and improve the pronunciations. To overcome the problem,
we introduce a neural vocoder (Tamamori et al. 2017; Kalch-
brenner et al. 2018; Ping, Peng, and Chen 2019; Prenger,
Valle, and Catanzaro 2019; Valin and Skoglund 2019; Ku-
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mar et al. 2019; Wang, Takaki, and Yamagishi 2020; Ya-
mamoto, Song, and Kim 2020; Yang et al. 2020; Kong, Kim,
and Bae 2020; Yang et al. 2021; Chen et al. 2021a; Kong
et al. 2021; Chen et al. 2021b; Cong et al. 2021; Jang et al.
2021; Okamoto et al. 2021) that can synthesize high-fidelity
speech waveforms as the agent’s speech organ, substitut-
ing the sound dictionary. In the self-supervised scenario, the
agent needs to try variations of pronunciations on the fly dur-
ing the dialogue to investigate whether they are successful
or not. Therefore, we use a generative vocoder that produces
variations of waveforms based on random samplings in the
inference.

Although acoustic features, such as mel-spectrograms, are
used in neural text-to-speech as the input, we control the
neural vocoder using a fixed dimensional action vector in-
spired by the unconditional training and synthesis in Dif-
fWave (Kong et al. 2021). While a simple WaveNet vocoder
can synthesize high-fidelity speech waveforms, the synthesis
speed is slow due to the auto-regressive structure (Tamamori
et al. 2017). To accelerate the agent’s training and inference
speed, we adopt WaveGrad (Chen et al. 2021a) as a real-time
neural vocoder based on preliminary experiments compar-
ing Parallel WaveGAN (Yamamoto, Song, and Kim 2020),
WaveGrad, and DiffWave vocoders.

Related works

As a pioneering constructive engineering work with spoken
language acquisition, Gorin et al. developed an automatic
call-routing system that detected new words in speech utter-
ance and added them in the recognition vocabulary (Gorin,
Levinson, and Sankar 1994). It applied an out-of-vocabulary
detection and worked with speech utterance and call rout-
ing pairs without using text labels. Iwahashi implemented an
advanced physical robot system that used a hidden Markov
model (HMM) and stochastic context-free grammar (SCFG)
(Iwahashi 2000). The system learned vocabulary from iso-
lated word pronunciations and an association between words
and images based on mutual information. The robot acted
by moving an arm based on a heuristic program, combin-
ing the learned results. Roy er al. proposed a system to
learn vocabulary from a continuously spoken utterance (Roy
and Pentland 2002). It could also learn associations be-
tween words and image objects. However, it needed a pre-
trained phonetic speech-recognizer. The system aimed to ac-
quire image-grounded language knowledge and did not in-
clude action generation. Taniguchi et al. proposed a system
based on a hierarchical Bayes model, which realized an in-
tegrated representation of language knowledge (Taniguchi
et al. 2020). It needed a pre-trained phoneme recognizer as
the starting point of vocabulary learning.

Per the research on learning the pronunciations of new
words, Taguchi et al. proposed a system to recognize and
utter new place names by assuming a trained phoneme
model (Taguchi et al. 2011). It learned the place names from
utterance and location coordinates, where the coordinate
is estimated based on a laser range-finder. Zuo et al. pro-
posed a method to interactively update pronunciation (Zuo
et al. 2013). They oriented rudimentary investigation, and
the method needed a pre-trained phoneme recognizer and a
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Figure 1: WaveGrad network structure used in our speak-
ing agent. It consists of up and down sampling blocks and a
Feature-wise Linear Modulation (FILM) module.

pre-defined grammar that modeled the dialogue story. These
studies adapt the pronunciation at a transcribed phone level
and do not adapt the speech synthesizer.

Learning these systems, except for (Gorin, Levinson,
and Sankar 1994) and (Zuo et al. 2013), were based on
co-occurrence modelings of speech sounds, images, and
actions, where the former was based on the error feed-
back (Gorin et al. 1991). For the language acquisition
agents, actions are to interact with the environment. Pro-
nouncing an utterance corresponds to moving a stone or
pressing a controller button for game-playing agents (Sil-
ver and Huang 2016; Mnih et al. 2015). However, the co-
occurrence modeling-based systems lack a mechanism to
learn the effect of executing an action as the means to sat-
isfy its goal through trial and error. Therefore, the agent’s
actions are limited to reproducing those directly thought by
teachers. As a reinforcement learning-based language acqui-
sition system, Hatori et al. proposed a robot arm system that
learns to follow spoken instructions to move the arm (Hatori
et al. 2018). While the system could learn the instructions,
it assumed a pre-trained speech recognition system to tran-
scribe speech utterances.

WaveGrad vocoder

WaveGrad is one of the diffusion probabilistic vocoders
based on denoising score matching (Vincent 2011) and dif-
fusion probabilistic model (Ho, Jain, and Abbeel 2020). It
models the diffusion process from a speech sound to ran-
dom noise and generates speech sounds as its inverse pro-
cess (Chen et al. 2021a; Kong et al. 2021). Compared with
conventional non-autoregressive neural vocoders, the diffu-
sion probabilistic vocoders can be trained with a simple loss
function in the time domain. It does not use the generative
adversarial network (GAN) (Goodfellow et al. 2014) train-
ing as in (Kumar et al. 2019; Yamamoto, Song, and Kim
2020; Yang et al. 2020; Kong, Kim, and Bae 2020; Yang
et al. 2021; Cong et al. 2021; Jang et al. 2021; Bifnkowski
et al. 2020).

It trains a neural network €y that predicts Gaussian white
noise € from the mixture of speech waveform x and noise €.
Figure 1 shows an implementation example of ¢y, which we



use in our experiment. It consists of up and down sampling
blocks used in GAN-TTS (Bifikowski et al. 2020) and a
Feature-wise Linear Modulation (FiLM) (Perez et al. 2018)
module. To control the sequential diffusion process, it uses a
gradually increasing noise schedule 51, B2, - - -, BN, Where
N is the number of diffusion steps (Ho, Jain, and Abbeel
2020). The network €y has inputs h to control the speech
waveform content and c to indicate the noise level at each
step. The time domain loss function for the training is de-
fined as shown in Equation (1).

E.. [ € — €9 (ﬁxo +V1— ae, h, c) Hl] , (1)

where /& is a random sample drawn uniformly between
Va, and \/an_1, ¢ = V&, a, = [['_; as, and o, =
1— Bn.

In the inference, input Gaussian white noise xy ~
N(0,1) is iteratively converted into a speech waveform by
the denoising process based on Langevin dynamics (Song
and Ermon 2019) withn = N, N —1,--- |1 as follows:
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where 0, = \/Bn(1 — an_1)/(1 —ay,), 2 ~ N(0,I) for
n>1,and z =0forn = 1.

Typically, h is an acoustic feature sequence (Chen et al.
2021a) or phoneme sequence (Chen et al. 2021b) that repre-
sents a sentence for text-to-speech. It can also be a one-hot
vector as in DiffWave (Kong et al. 2021) to specify a word
for unconditional training and synthesis. We adopt the latter
strategy for our speaking agent.

€9 (xn7 h, C)) +onz, (2)

Spoken language acquisition systems
Sound segment dictionary based baseline system

We use Zhang’s sound segment dictionary-based spoken
language acquisition agent (Zhang et al. 2020) as a baseline.
The agent does not know any specific language initially; it
learns a language in a self-supervised manner. The learn-
ing process consists of an observation phase and a dialogue
phase. In the observation phase, the agent observes untran-
scribed speech utterances and utterance-image pairs. In the
dialogue phase, the agent interacts with the environment and
learns to speak through trial and error. The environment here
means the outside world for the agent, including a dialogue
partner who recognizes spoken utterances. The agent has
an internal desire that depends on an agent’s internal state,
and the goal of the dialogue for the agent is to satisfy its
desire. The internal state represents the agent’s preference,
mood, nutritional condition, etc., depending on the design
by the agent’s creator. The environment can get the informa-
tion about the agent’s internal state only through spoken dia-
logue. An intuition behind their system is that human babies
first observe speech sounds uttered by their parents and peo-
ple around them. After obtaining some initial knowledge,
babies try to use it to communicate with others, driven by
internal motivation.

Figure 2 shows the system structure. The right-hand
side (b) is the main body of the agent that interacts with the

environment in the dialogue phase. It consists of an action-
value function, an internal reward evaluator, and a sound
segment dictionary. The reward evaluator defines the agent’s
inner desire, where the agent is rewarded when the desire
is satisfied. The left-hand side (a) performs unsupervised
learning in the observation phase and initializes the agent.

In the observation phase, the agent first makes candi-
dates of possible word units from the observed sounds by
an ES-KMeans (Kamper, Livescu, and Goldwater 2017)-
based segmentation and makes a prototype sound dictionary.
Then, it learns sound-image correspondence from the sound-
image pairs using a triplet loss-based unsupervised cross-
modal representation learning (Harwath, Torralba, and Glass
2016; Ilharco, Zhang, and Baldridge 2019). The represen-
tation learning makes image and sound front-end networks
that map sound and image inputs to the same feature space.
The agent uses the networks to initialize the input modules
of the action-value function. The agent also classifies the im-
age samples into K clusters by applying K-Means cluster-
ing in the feature space. Ideally, the K clusters correspond
to image object types. For each cluster’s centroid, L closest
sound segments are selected from the prototype sound dic-
tionary by mapping the waveforms to the features using the
sound front-end. A revised sound dictionary is made from
the selected K x L sound segments, which the agent uses as
the action space. Besides, the agent uses the learned sound-
image correspondence to initialize a focusing mechanism,
which helps efficient learning in the dialogue phase by guid-
ing the agent’s attention to those word entries in the dictio-
nary related to the current eyesight.

In the dialogue phase, the agent tries to interact with the
environment by speaking. Initially, the agent has no idea
how to pronounce words to gain the reward. Therefore, the
agent randomly selects and replays a segment in the sound
dictionary, with the help of the focusing mechanism. Many
of the segments are broken fragments, but some are mean-
ingful words. The environment or the dialogue partner lis-
tens to the agent’s utterance. Based on the recognition result,
the environment gives feedback, such as food, to the agent.
The agent equips with a reward evaluator inside, and be-
comes happy if it successfully gets desired feedback. Based
on Q-learning (Watkins and Dayan 1992), the agent grad-
ually learns which segment to choose, understanding the
meaning of pronouncing it for the current internal and ex-
ternal states.

Proposed system

We replace the sound dictionary in the baseline system with
a trainable speech synthesizer. The synthesizer should be
able to produce variations of waveforms for the same utter-
ance so that the agent can gradually adjust it. Additionally, it
should have few tuning factors and be computationally effi-
cient to fit with the self-supervised learning framework. For
these reasons, we choose the WaveGrad method. As shown
in Figure 3, the new agent has the same structure as the orig-
inal one except for the WaveGrad-based speech organ. The
action vector obtained from the action-value function is used
as the condition h for the WaveGrad.

We integrate the training of WaveGrad into the self-
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speech organ.

supervised learning framework as shown in Algorithm 1.
In the algorithm, the agent first uses the sound dictionary
approach with N4 dialogue episodes. During the dialogue-
based learning process, it records its experience. Using the
record, the agent makes a data set Dy of pairs of an index of
the sound dictionary element and the corresponding wave-
form segment obtained from a successful dialogue episode.
Because the original sound dictionary contains many junk
segments, the agent compresses it by removing those ele-
ments that have never resulted in successful episodes. Ac-
cordingly, the agent prunes action-value function’s output
units that correspond to the removed entries. The index IDs
in Dy are also updated for consistency. Then the agent uses
the modified Dy to train the WaveGrad synthesizer that takes
the element index represented by a one-hot vector as the con-
dition h, and generates the corresponding waveform as the
output.

After obtaining the trained WaveGrad, the agent plugs in
it on top of the action-value function’s output and starts us-
ing it. In the succeeding dialogues, the agent makes a new
data set D; of pairs of an action vector and a generated sound

waveform for every Np episodes by choosing successful ex-
periences and updates the WaveGrad module using it.

Algorithm 1: WaveGrad speech organ-based spoken lan-
guage acquisition

1: Train the sound segment dictionary-based language ac-
quisition agent with N4 dialogue episodes.

2: Make a set of paired data Dy of an index of the sound
dictionary element and the corresponding waveform
segment that is used in a successful dialogue episode.

3: Train a WaveGrad speech synthesizer using Dy. Re-
place the sound dictionary of the agent with the trained
WaveGrad synthesizer.

4: for! =1to Lt do

5. Repeat the dialogue episodes for Np times and train
the action-value function of the agent.

6:  Make a set of paired data D; of the action vector and
the generated sound waveform recorded from the suc-
cessful episodes.

7. Update WaveGrad speech synthesizer using D;.

8: end for

Language acquisition task

We evaluate the agents with a task of obtaining a fa-
vorite food. In the world, there are eight types of foods;
cherry, green pepper, lemon, orange, potato, strawberry,
sweet potato, and tomato.

Figure 4a shows the observation phase. In this phase, the
agent first listens to a long sound signal that contains ut-
terances mentioning food names in random order with ran-
dom intervals of 1 to 3 seconds. The utterances are generated
based on templates of “<food>,” “A <food>,” “A <color>
<food>,” and “It’s a <food>", where <food> is the food
name and <color> is a color name that explain the food.
For example, if the food is cherry, they are “Cherry,” “A
cherry,” “A red cherry,” and “It’s a cherry”. Each of the eight
food names appears 90 times. The agent utilizes this signal
to make the prototype sound dictionary.
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Then, the agent is shown a food photo with an utterance
indicating the food. The indication repeats 2880 times for
combinations of 90 photos of each food, four types of the
utterances, and eight types of the foods. All the photos are
different, and they have one to three food objects of the same
type.

In the dialogue phase, the agent has a random color as its
internal state at each dialogue episode. The agent wants a
food object with an average color closer to the internal state,
where the Euclidean distance is measured in the RGB space.
As shown in Figure 4b, the environment shows two food
photos to the agent in each episode, and the agent speaks
an utterance. The environment chooses the two photos by
random sampling with replacement from a pool that contains
30 photos for each food type. The environment listens the
agent’s utterance and recognizes it. If the recognition result
is one of the shown food names, the environment gives the
food to the agent. The agent gets a reward of » = 1 if the
obtained food is what it desires between the two. In case the
agent receives the opposite food or gets nothing, it gets a
reward of » = 0. The agent regards a dialogue episode as
successful if » = 1. The photo samples used in the dialogue
phase have no overlap with those used in the observation
phase.

We generated the utterances by using the Google Text-
To-Speech library 2. The food images are a subset of those
gathered in (Zhang et al. 2020). To better simulate a real-
istic situation, we add 30 dB white noise to the agent’s ut-
terance as a background environmental noise. To evaluate
the agent’s adaptability to an environmental change, we fur-
ther add a 10 dB, 300 Hz sine wave noise after repeating a
certain number of the dialogue episodes. To implement the
speech recognition function of the environment, we use ES-
Pnet (Watanabe et al. 2018) with a super multilingual speech
model (Hou et al. 2020) 3 instead of the Google’s speech
recognition API used in the original Zhang’s system *.

Evaluation measure

We evaluate the agent’s learning performance by an average
reward for the number of dialogue episodes. Because of the
reward definition, the average reward becomes 1.0 when the
agent always pronounces the right food name and the en-
vironment correctly recognizes it. In other words, it is the
agent’s side’s responsibility to make a clear pronunciation
so that the speech recognizer in the environment can accu-
rately recognize it. When the agent uses the baseline sound
dictionary approach, the unclear pronunciation’s main cause
is the blunted word due to inaccurate segmentation. When
the agent uses the WaveGrad speech organ, the speech syn-
thesis performance becomes another factor that affects it. As
we add the environmental noises to the agent’s utterance, the
agent needs to somehow make its pronunciation clear under
the noisy condition.

To evaluate the agent’s pronunciation separately from the
action selection, we additionally evaluate the valid word
recognition rate (VWRR). We define it as a ratio that the
recognition result is one of the eight food types among the
total number of the agent’s pronunciation. The VWRR be-
comes 0% if the environment never recognizes agent’s pro-
nunciation even if the agent internally decides the right food
name. It becomes 100% if the environment always recog-
nizes the agent’s pronunciation as one of the eight food
names.

Experimental setup

For the sound dictionary based-agent, we mostly followed
the network structure and the learning setup used in (Zhang
et al. 2020). Some differences were that we set the cluster
number K to 120 and per the cluster segment number L to
100 when making the sound dictionary, and the parameter
A = 0.97 used in the action filter of the focusing mecha-
nism. The sound dictionary size was K L = 12000. We set

Zhttps://pypi.org/project/gTTS/

3https://github.com/Porridge 144/sup-mlt-demo

“Due to the limit of the number of API calls, we could not use
Google’s speech recognition in this work. Zhang et al. first recog-
nized all the sound segments in the sound dictionary and cached the
results because the pronunciations did not change in their experi-
ment. However, we have to recognize the agent’s utterance every
time since the agent’s pronunciation changes dynamically. Related
to this change, we shrank the number of the food categories to eight
because some of the food names did not exist in the environment’s
recognition dictionary.
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Figure 5: Valid word recognition rate (VWRR) and reward
when the environmental noise is steady. The environment
always hears the agent’s utterance with a 30 dB background
white noise. We obtain the plot by calculating an average
score at every 2400 episodes.

the number of the initial dialogue episodes N4 = 120000.
For the number of the succeeding dialogue episodes Np, we
investigated 2400, 24000 and 48000. We refer to them as
WaveGrad2.4k, WaveGrad24k, and WaveGrad48k systems,
respectively. For the WaveGrad noise schedule, we used the
arithmetic progression with N = 50, §; = 0.0001 and
Bn = 0.05. The sampling rate of the waveforms was 8000
Hz.

Results

Figure 5 shows the results when the environmental condi-
tion does not change, where the environment always hears
the agent utterance with 30 dB background white noise. In
the figure, we denote the baseline system as SoundDict. It
kept using the same sound dictionary through the dialogue
episodes. The proposed systems switched to the WaveGrad
speech organ after 120000 episodes. The action vector size
was 161 after the dictionary entry pruning.

We observe in Figure 5(a) that VWRR of WaveGrad2.4k
after 120000 episodes first increases but soon begins to de-
crease. This was probably because of an unstable parame-
ter update of WaveGrad due to the small number of sam-
ples. When we used the update interval of 24k or 48k, we
observed mostly a monotonic increase of VWRR after the
switching, and they gave slightly better performance than
the baseline. The baseline system showed a relatively flat
VWRR for the dialogue episodes larger than 120000 be-
cause there was no mechanism to adjust the pronunciation.
Once the agent identifies useful entries in the sound dictio-
nary, it keeps using them. Figure 5(b) shows the plot of the
averaged reward. The VWRRs of WaveGrad24k and Wave-
Grad48k systems are slightly better than the baseline and
WaveGrad2.4k was slightly worse. However, the scores of
the four systems had overall similar trends. This was because
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Figure 6: Valid word recognition rate (VWRR) and reward
when the environmental noise changes at 120000 episodes.
After 120000 episodes, the 10 dB sine wave noise is added,
along with the 30 dB white noise.

even the lowest VWRR by WaveGrad2.4k after 120000
episodes was more than 94%.

Figure 6 shows the results when the noise environment
changes at 120000 episodes, where we add 10 dB sine wave
noise. The VWRR and the reward largely dropped at 120000
episodes because of the sine wave noise. The VWRR recov-
ers with the repetition of the episodes. However, the baseline
system had limited improvement because the agent could
only choose alternative entries in the sound dictionary. The
WaveGrad system had a more significant improvement be-
cause of the flexible learning ability. When we listened to the
agent’s utterances, they were natural. The average VWRRs
at 360000 episodes by the proposed and baseline systems
were 98.5% and 92.8%, respectively. We observed the same
trend with the reward, where they were 0.737 and 0.652 at
360000 episodes. These results prove the superior adaptabil-
ity of the WaveGrad based speaking agent to the baseline.

Conclusion

‘We have proposed a spoken language acquisition system us-
ing a WaveGrad speech organ. Compared to existing sound
dictionary-based systems, the proposed approach has higher
flexibility with the utterance pronunciation and superior
adaptability to the changing environment. While recent un-
supervised neural speech synthesis studies can randomly
generate word-like sounds, our work is the first to synthe-
size sound utterances based on their meaning. Future work
includes extending the utterance’s expressive power, such as
realizing emotional expression, longer sentences, and few-
shot learning for quick vocabulary expansion in the real
world. Additionally, many existing acoustic model adapta-
tion techniques will be helpful to improve the pronunciation
adaptation efficiency.
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