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Abstract

This paper introduces S3PRL-VC, an open-source
voice conversion (VC) framework based on the S3PRL
toolkit. In the context of recognition-synthesis VC,
self-supervised speech representation (S3R) is valu-
able in its potential to replace the expensive super-
vised representation adopted by state-of-the-art VC sys-
tems. Moreover, we claim that VC is a good probing
task for S3R analysis. In this work, we provide a se-
ries of in-depth analyses by benchmarking on the two
tasks in VCC2020, namely intra-/cross-lingual any-to-
one (A2O) VC, as well as an any-to-any (A2A) setting.
We also provide comparisons between not only differ-
ent S3Rs but also top systems in VCC2020 with super-
vised representations. Systematic objective and subjec-
tive evaluation were conducted, and we show that S3R
is comparable with VCC2020 top systems in the A2O
setting in terms of similarity, and achieves state-of-the-
art in S3R-based A2A VC. We believe the extensive
analysis, as well as the toolkit itself, contribute to not
only the S3R community but also the VC community.
The codebase is now open-sourced1.

Introduction
Voice conversion (VC) refers to a technique that converts
a certain aspect of speech from a source to that of a target
without changing the linguistic content (Stylianou, Cappe,
and Moulines 1998; Toda, Black, and Tokuda 2007). In this
work, we focus on speaker conversion, which is the most
widely investigated type of VC. From an information per-
spective, VC can be performed by first extracting the spoken
contents from the source speech, and then synthesizing the
converted speech from the extracted contents with the iden-
tity of the target speaker. Such a paradigm is sometimes re-
ferred to as recognition-synthesis (rec-syn) based VC, as de-
picted in Figure 1. Formally, starting from the source speech
X, a recognizer first extracts the spoken contents, H, which
is then consumed by the synthesizer to generate the con-
verted speech, Y:

Y = Synth(H),H = Recog(X). (1)
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1https://github.com/s3prl/s3prl/tree/
master/s3prl/downstream/a2o-vc-vcc2020

Figure 1: The training and conversion procedures in any-to-
one recognition-synthesis based VC.

In the latest voice conversion challenge 2020 (VCC2020)
(Zhao et al. 2020), one of the baselines directly concatenated
an automatic speech recognition (ASR) model and a text-to-
speech (TTS) model (Huang et al. 2020). In addition, several
top performing systems also implemented such a framework
(Zhang et al. 2020), showing state-of-the-art performance in
terms of both naturalness and similarity.

In rec-syn based VC, an ASR model trained on a labeled
dataset is often used to extract the supervised spoken content
representation, such as text (Huang et al. 2020) or phonetic
posteriorgram (PPG) (Sun et al. 2016). The collection of la-
beled datasets is often costly, especially in a low-resource
setting, such as the cross-lingual VC scenario (Zhao et al.
2020). Therefore, researchers have resorted to unsupervised
or the so-called self-supervised speech representation (S3R)
learning paradigm, where a large-scale unlabeled data is
used to learn rich, compact speech representations. S3Rs
have been applied to any-to-one VC (Huang et al. 2021b),
many-to-many VC (Polyak et al. 2021), any-to-any VC (Lin
et al. 2021b; Lin et al. 2021a) and cross-lingual VC (Huang
et al. 2021a).

In addition to its label-free property, S3R based VC is
also attractive in it being a good probing task for S3R anal-
ysis. A recently published SUPERB benchmark (Yang et al.
2021) dedicates to compare different S3Rs across a range of
discriminative speech processing tasks, while it remains un-
clear what representations are optimal for generation tasks
like VC. For instance, wav2vec 2.0 (Baevski et al. 2020) has

https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/a2o-vc-vcc2020
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been shown to be powerful in not only ASR but also speaker
and language recognition (Fan et al. 2021), implying that
it encodes rich content, speaker and language information.
Based on the discussion on the information perspective of
VC, we may hypothesize that a good H in Eq. 1 should be
compact in content but contains little to none speaker infor-
mation. Based on such an assumption, wav2vec 2.0 may not
be an optimal representation for VC.

In this paper, we describe S3PRL-VC, an extension of the
S3PRL toolkit and SUPERB. Our main focus was any-to-
one (A2O) VC, where the synthesizer is trained in a target-
speaker-dependent fashion. We used the VCC2020 dataset,
which allows us to test intra-lingual and cross-lingual set-
tings. We also provide an any-to-any (A2A) extension by
using an off-the-shelf d-vector (Variani et al. 2014) model
to encode the unseen speaker information. We implemented
models resembling the top systems in VCC2018 (Liu et al.
2018) and VCC2020 (Liu et al. 2020), which allows us to
focus on the comparison. We conducted a large-scale evalu-
ation, both objectively and subjectively, to compare the per-
formance between not only different S3Rs but also state-
of-the-art systems. S3PRL-VC is a competitive system by
yielding (1) a comparable performance with VCC2020 top
systems in the A2O setting in terms of similarity, and (2)
state-of-the-art performance in S3R-based A2A VC. Our
main contributions are:
• Inheriting the property of SUPERB, our S3PRL-VC im-

plementation ensures fast benchmarking but also state-
of-the-art performance. Such a fast, easy-to-use property
benefits not only S3R researchers but also the VC com-
munity.

• We present a large-scale comparison of S3Rs from the VC
point-of-view, providing new insights and perspectives to
analyze the representations. We also compared with top
systems in VCC2020 that used PPGs, showing the limita-
tion and competitiveness of S3Rs.

Tasks
General description of VCC2020
All experiments in this work are benchmarked on the
VCC2020 dataset (Zhao et al. 2020). There are two tasks
in VCC2020, with intra-lingual VC being task 1 and cross-
lingual VC being task 2. The two tasks share the same two
English male and female source speakers. The target speak-
ers include two male and two female English speakers for
task 1, and one male and one female speaker each of Finnish,
German, and Mandarin for task 2. For each speaker, 70 ut-
terances (roughly five minutes) in their respective languages
and contents are provided, and there are 25 test sentences
for evaluation. During conversion, X (which is in English)
is converted as if it was uttered by the target speaker while
keeping the linguistic contents unchanged.

Intra-lingual and cross-lingual any-to-one VC
We first consider the two tasks in VCC2020 under the A2O
setting. Any-to-one VC aims to convert from any arbitrary
speech into that of a predefined target speaker. The train-
ing and conversion processes are depicted in Figure 1. The

Figure 2: The models implemented in this work. Left: the
simple model. Middle: the simple model with an AR loop.
Right: the Tacotron2 model, with extension to an any-to-any
model by accepting a d-vector as the speaker embedding.

ability to encode H from any unseen speaker is ensured by
the common practice of training S3Rs on a multi-speaker
dataset. Using the target speaker dataset, Dtrg, the synthe-
sizer is trained to reconstruct the acoustic feature from H.
In the conversion phase, the converted features, Y, are gen-
erated following Eq. 1. Finally, a waveform synthesizer (ex.
neural vocoder) generates the converted waveform.

Any-to-one VC is a good probing task to investigate sev-
eral characteristics of an upstream S3R model. First, a fun-
damental requirement of VC is the linguistic consistency, so
there is a positive correlation between the VC performance
of an S3R model and its ability to faithfully encode H. Sec-
ond, if an S3R model encodes rich speaker information, then
the source speaker information in X will conflict with the
target speaker attributes injected by the synthesizer, which
hurts the VC performance. Finally, during the synthesizer
training in cross-lingual VC, the S3R model may fail to gen-
eralize to X from a non-English target speaker since most
existing S3R models are trained with English datasets only.
It is worthwhile to examine the ability of mono-lingual S3R
models to transfer to different languages.

Intra-lingual any-to-any VC
We then provide an extension for the A2A scenario, also
known as zero-shot VC. A2A VC attempts to convert to a
target speaker where Dtrg is so limited (less than one minute)
such that fine-tuning in infeasible. A2A VC models are usu-
ally trained on a multi-speaker dataset. Instead of recover-
ing the target speaker information by the synthesizer as in
A2O VC, we use speaker embeddings, s, extracted by an
off-the-shelf speaker encoder, which is pretrained on an au-
tomatic speaker verification (ASV) dataset and objective.
Such a paradigm is also used in zero-shot TTS (Jia et al.
2018). In training, the speaker embedding extracted from the
target waveform is used. During conversion, given Dtrg, s is
formed as an average of each embedding from each utter-
ance. We may then rewrite Eq. 1 as:

Y = Synth(H, s),H = Recog(X), s = SpkEnc(Dtrg).
(2)

Implementation
Recognizer (upstream models)
Table 1 depicts the list of S3Rs we compared in this work,
which are the upstream models supported in S3PRL at the



Table 1: Objective evaluation results on different VC settings over various S3Rs. For MCD and WER, the smaller the better;
for ASV, the higher the better.

Upstream
Intra-lingual A2O Cross-lingual A2O Intra-lingual A2A

Simple Simple-AR Taco2-AR Taco2-AR Taco2-AR
MCD WER ASV MCD WER ASV MCD WER ASV WER ASV MCD WER ASV

mel 8.41 48.5 59.00 8.92 22.7 49.75 8.47 38.3 77.25 39.0 46.67 9.49 4.2 19.50
PPG (TIMIT) 7.78 69.0 85.50 7.83 58.9 95.25 7.18 33.6 99.75 51.0 84.67 8.31 12.9 83.50
PASE+ 9.29 5.0 26.75 9.52 5.7 26.00 8.66 30.6 63.20 36.3 34.67 9.85 4.2 8.00
APC 8.67 8.6 48.00 8.73 7.1 41.75 8.05 27.2 87.25 33.9 52.33 9.57 3.5 23.25
VQ-APC 8.12 10.8 81.25 8.37 7.4 60.50 7.84 22.4 94.25 28.4 68.00 9.43 4.0 22.00
NPC 7.74 39.0 92.75 8.15 21.1 76.75 7.86 30.4 94.75 37.6 59.00 9.39 4.4 21.00
Mockingjay 8.58 31.3 51.00 8.74 9.5 47.00 8.29 35.1 79.75 39.2 46.00 9.43 5.0 25.00
TERA 8.60 11.4 46.50 8.67 6.0 42.50 8.21 25.1 83.75 29.2 49.33 9.31 5.2 18.75
Modified CPC 8.71 9.4 40.00 8.87 7.0 30.00 8.41 26.2 71.00 35.3 32.83 9.61 4.1 10.75
DeCoAR 2.0 8.31 7.4 54.75 8.33 6.4 53.00 7.83 17.1 90.75 26.8 59.33 9.28 4.0 27.00
wav2vec 7.45 14.0 95.50 7.64 4.9 90.50 7.45 10.1 98.25 13.9 75.83 8.77 3.5 40.00
vq-wav2vec 7.41 13.4 91.00 7.24 11.6 98.75 7.08 13.4 100.00 21.0 88.83 8.47 4.2 73.25
wav2vec 2.0 Base 7.80 24.7 92.75 7.77 5.0 86.50 7.50 10.5 98.00 14.9 82.17 9.03 3.2 27.00
wav2vec 2.0 Large 7.64 12.5 81.75 7.67 9.0 82.75 7.63 15.8 97.25 22.7 78.00 8.99 4.1 22.25
HuBERT Base 7.70 5.5 89.25 7.79 4.7 84.25 7.47 8.0 98.50 13.5 82.33 9.19 3.4 23.25
HuBERT Large 7.54 5.6 95.00 7.54 5.6 93.00 7.22 9.0 99.25 15.9 86.50 9.13 3.0 27.75

date of publication. For a complete list of information (archi-
tecture, objective, etc.), refer to (Yang et al. 2021). All up-
streams are trained with English data (mostly Librispeech).
In addition to the S3Rs, two extra upstreams were included:
(1) mel-spectrogram, “mel”, and (2) “PPG (TIMIT)”, which
is trained supervisedly on the TIMIT dataset.

Synthesizer model design
Mel-spectrogram was selected as the target acoustic feature.
We implemented several models to resemble top systems of
past VCCs, as illustrated in Figure 2. We avoid expensive
model components like attention (Vaswani et al. 2017) for
fast benchmarking.
Simple: We start from the model used by the top system in
VCC2018 (Liu et al. 2018). The simple model consists of
a single layer feed-forward network (FFN), two long short-
term memory layers with projection (LSTMP), and a linear
projection layer.
Simple-AR: As autoregressive (AR) modeling has been
shown to be effective in speech synthesis (Wang, Takaki,
and Yamagishi 2017), we added an AR loop to the simple
model. At each time step, the previous output is consumed
by the first LSTMP layer. Dropout is essential in the AR loop
to avoid exposure bias brought by teacher-forcing (Wang,
Takaki, and Yamagishi 2018; Wang et al. 2017).
Taco2-AR: We increase the model complexity by using a
model architecture similar to that of Tacotron 2 (Shen et al.
2018), which resembles the model used by the top system
in VCC2020 (Liu et al. 2020). Different from Tacotron 2,
the attention module was not used as it was reported to be
useless in (Liu et al. 2020).

Other setups
Any-to-any settings. The dataset used to train the A2A VC
model is the VCTK dataset (Veaux, Yamagishi, and Mac-
Donald 2017). For the speaker encoder, we used the d-vector
model (Variani et al. 2014) trained on a mix of datasets, in-
cluding LibriSpeech, VoxCeleb 1 and 2.

Waveform synthesizer. We used the HiFi-GAN (Kong,
Kim, and Bae 2020), a state-of-the-art parallel real-time neu-
ral vocoder. For the A2O setup, we mixed the data of all 14
speakers in VCC2020 with the VCTK dataset, while for the
A2A setup we used only the VCTK dataset.

Evaluation metrics and protocols
Objective evaluation
We chose three objective evaluation metrics, all of which
measure different aspects of a VC system. Mel cepstrum dis-
tortion (MCD) is an intrusive, L2-norm based metric which
measures the general performance. Word error rate (WER)
measures the intelligibility and the linguistic consistency,
and in this work we used a pretrained wav2vec 2.0 model.
The accept rate from a pretrained ASV model measures the
speaker similarity by calculating the cosine similarity us-
ing speaker embeddings. For scenarios like the cross-lingual
A2O task where the reference speech is not accessible, we
report WER and ASV only since they are non-intrusive.

Subjective evaluation
For the subjective test, we asked listening participants to
evaluate two common aspects in VC: naturalness and sim-
ilarity. Listeners were asked to evaluate the naturalness on
a five-point scale. For conversion similarity, a natural target
speech and a converted speech were presented, and listeners
were asked to judge whether the two samples were produced
by the same speaker on a four-point scale.

For each system, a total of 80 utterances (5 random ×
16 conversion pairs) were evaluated. Recordings of the tar-
get speakers were also included in the naturalness test and
served as the upper bound. We used an open-source toolkit
(Naderi and Cutler 2020) that implemented the ITU-T Rec-
ommendation P.808 (ITU-T Recommendation P.808 2018)
to screen unreliable ratings obtained through the Amazon
Mechanical Turk (Mturk). We recruited more than 280 lis-
teners from the United States and had each sample rated



by five different participants on average. Audio samples are
available online2.

Evaluation results and discussions
Comparison of different models
We first investigate the impact of using different synthesizer
models described in Section in the intra-lingual A2O set-
ting, as shown in Table 1. First, only by adding the AR loop
to the Simple model, most S3Rs benefit from large improve-
ments in WER. With Taco-AR, all S3Rs except PASE+ and
modified CPC achieved an ASV accept rate higher 80%,
while all S3Rs suffered from a degradation in WER. This
shows that increasing the model capacity can significantly
improve the speaker similarity, while sacrificing the intelli-
gibility. However, we would like to emphasize that WER is
a strict measurement of intelligibility, and human can actu-
ally recognize better than machine. On the other hand, the
Taco2-AR model yields the best MCD scores, which, as we
will show later, correlates better with subjective naturalness
and similarity. Also, we empirically found the training time
of the three models similar. Based on these reasons, we de-
cided to use the taco2-AR model for the succeeding tasks
and comparisons.

Results on different tasks
Next, we compare the results of using S3Rs for different
tasks. Looking again at Table 1, we first find S3Rs trained
on a mono-lingual corpus can still work well in the cross-
lingual setting, demonstrating the ability to transfer across
languages. However, compared with the intra-lingual A2O
task, it could be clearly observed that all S3Rs degraded in
terms of both the WER and ASV accept rate, which is sim-
ilar to the findings in (Das et al. 2020). Finally, in the intra-
lingual A2A setting, all S3Rs yielded WERs much lower
than those in the A2O setting, while the MCD values and
ASV accept rates were significantly worse. Even the best
upstream, vq-wav2vec, yielded only an accept rate of 73.25.
One possible reason is that in the A2A VC setting, modern
S3Rs still fail to disentangle content, such that the synthe-
sizer preserves too much speaker information. Another rea-
son may be that a jointly trained speaker encoder (Lin et al.
2021a) is essential for S3R-based VC.

Comparing with top systems using subjective
evaluation
We then compared S3R-based VC models with state-of-
the-art systems. USTC-2018 (Liu et al. 2018), USTC-2020
(Zhang et al. 2020; Liu et al. 2020)3, SRCB (Ma et al. 2020),
CASIA (Zheng et al. 2020) were top systems in VCC2020,
all of which adopted PPGs, synthesizer pretraining on a
multi-speaker dataset, and AR vocoders. Notably, they used
thousands of hours of internal data for training. ASR+TTS
(Huang et al. 2020) was the seq2seq+non-AR vocoder base-
line in VCC2020. S2VC (Lin et al. 2021a) is the STOA sys-

2https://bit.ly/3oydaY2
3USTC’s systems used text and PPG for the intra-lingual and

cross-lingual tasks, respectively.

Table 2: Comparison with state-of-the-art systems. All up-
streams use the Taco2-AR model.

System MCD WER ASV Naturalness Similarity

Intra-lingual A2O
mel 8.47 38.3 77.25 2.61 ± 0.11 35%± 3%
PPG (TIMIT) 7.18 33.6 99.75 3.32 ± 0.10 58%± 4%
PASE+ 8.66 30.6 63.20 2.58 ± 0.12 31%± 3%
APC 8.05 27.2 87.25 2.92 ± 0.11 43%± 4%
VQ-APC 7.84 22.4 94.25 3.08 ± 0.10 40%± 4%
NPC 7.86 30.4 94.75 2.98 ± 0.11 46%± 3%
Mockingjay 8.29 35.1 79.75 2.81 ± 0.12 42%± 4%
TERA 8.21 25.1 83.75 2.91 ± 0.12 37%± 4%
Modified CPC 8.41 26.2 71.00 2.74 ± 0.11 33%± 3%
DeCoAR 2.0 7.83 17.1 90.75 3.04 ± 0.11 43%± 4%
wav2vec 7.45 10.1 98.25 3.40 ± 0.05 52%± 2%
vq-wav2vec 7.08 13.4 100.00 3.59 ± 0.10 59%± 4%
wav2vec 2.0 B. 7.50 10.5 98.00 3.36 ± 0.06 51%± 2%
wav2vec 2.0 L. 7.63 15.8 97.25 3.26 ± 0.10 50%± 4%
HuBERT B. 7.47 8.0 98.50 3.48 ± 0.10 55%± 4%
HuBERT L. 7.22 9.0 99.25 3.47 ± 0.10 54%± 4%
USTC-2018† – 6.5 99.00 4.20 ± 0.08 55%± 4%
USTC-2020 6.98 5.4 100.00 4.41 ± 0.07 82%± 3%
SRCB 8.90 11.5 92.00 4.16 ± 0.08 68%± 3%
CASIA 7.13 11.0 98.25 4.25 ± 0.08 61%± 4%
ASR+TTS 6.48 8.2 100.00 3.84 ± 0.09 75%± 3%
Target – 0.7 – 4.57 ± 0.14 –

Cross-lingual A2O
PPG (TIMIT) – 51.0 84.67 2.79 ± 0.08 43%± 3%
vq-wav2vec – 21.0 88.83 3.28 ± 0.08 44%± 3%
HuBERT L. – 15.9 86.50 3.13 ± 0.08 41%± 3%
USTC-2018 – 5.6 97.67 4.17 ± 0.06 34%± 3%
USTC-2020 – 7.6 96.00 4.27 ± 0.07 43%± 3%
SRCB – 8.6 78.67 4.34 ± 0.07 34%± 3%
CASIA – 10.5 91.67 4.11 ± 0.07 45%± 3%
ASR+TTS – 34.5 67.83 2.51 ± 0.08 39%± 3%
Target – – – 4.48 ± 0.12 –

Intra-lingual A2A
PPG (TIMIT) 8.32 12.7 84.25 3.41 ± 0.08 34%± 4%
vq-wav2vec 8.47 4.2 73.25 3.58 ± 0.09 28%± 3%
S2VC† – 12.4 71.50 2.90 ± 0.09 29%± 3%
†: Systems generate 16kHz, so MCD is not calculable and direct score
comparison should be made with caution.

tem for A2A VC. The results are shown in Table 2. We sum-
marize our observations as follows:

• vq-wav2vec outperformed all other upstreams in the sub-
jective test, with a 3.59 naturalness and 59% similarity in
the intra-lingual A2O setting.

• In the A2O settings, there was still a naturalness gap be-
tween vq-wav2vec and other VCC2020 top systems (3.59
v.s. 4.16-4.25, 3.28 v.s. 4.11-4.34). As for similarity, vq-
wav2vec was on par with USTC-2018 and CASIA in the
intra-lingual A2O setting, and achieved top in the cross-
lingual setting.

• In the A2A setting, vq-wav2vec was on par with S2VC in
similarity, while being significantly better in naturalness.
Our system is therefore the new state-of-the-art in S3R-
based A2A VC.

https://bit.ly/3oydaY2


Table 3: Linear correlation coefficients between different
metrics.

Metric MCD WER ASV Nat. Sim.
MCD – 0.678 -0.934 -0.968 -0.961
WER – – -0.640 -0.808 -0.587
ASV – – – 0.910 0.911
Nat. – – – – 0.932
Sim. – – – – –

Impact of supervision
Although top systems using PPG greatly outperformed vq-
wav2vec in naturalness, they used AR vocoders and the sys-
tem was trained on large internal datasets, so the impact of
supervision is not yet clear. To this end, we compared vq-
wav2vec result with “PPG (TIMIT)” and the same vocoder.
The high WERs and low naturalness scores showed that the
PPG was indeed of low quality. Nonetheless, in all three set-
tings, “PPG (TIMIT)” can achieve similar or higher simi-
larity scores than vq-wav2vec. This shows that supervision
greatly contributes to similarity, especially in difficult set-
tings like A2A VC. This also shows that the ability of cur-
rent S3Rs to disentangle speaker information is still limited
when compared to PPG, and can be further improved in the
future.

Justify the objective metrics with correlation
analysis
Conducting a subjective test whenever a new S3R is devel-
oped cannot meet the fast benchmark requirement of SU-
PERB. Therefore, we examine if the objective measures
align well with human perception. Using the intra-lingual
A2O results over different upstreams, we calculated pair-
wise linear correlation coefficients. Results in Table 3 sug-
gested that MCD best aligned with both naturalness and
similarity. Note that in this correlation analysis, we consid-
ered systems that used the same decoder and neural vocoder.
Since the correlation result is strongly affected by the pool
of methods evaluated in a listening test, this good correlation
could be observed only in such a homogeneous condition.
Nonetheless, this result is still very useful for the bench-
marking requirement of SUPERB.

Conclusions and future work
We presented S3PRL-VC, an extension of the S3PRL toolkit
that applied S3R to VC. We described the model design
choice, and covered a variety of tasks. Extensive experi-
ments, both objective and subjective, evaluated the capabil-
ity of various S3Rs when applied to different VC scenarios.
By comparing S3Rs with supervised presentations like PPG,
we showed the competitiveness of S3Rs in certain settings,
meanwhile shedding light on improving directions.

We suggest different future directions for readers from
different communities. From the VC perspective, it is worth-
while to continue investigating better downstream model de-
sign. For instance, in A2A VC, a proper speaker encoder
should be used instead of fixed d-vector. Meanwhile, we en-
courage to use VC as a probing task when designing a new

S3R model, considering the challenges to overcome brought
by all aspects required in VC.
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