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Abstract
Over the recent years, various self-supervised contrastive em-
bedding learning methods for deep speaker verification were
proposed. The performance of the self-supervised contrastive
learning framework highly depends on the data augmentation
technique, but due to the sensitive nature of speaker informa-
tion within the speech signal, most speaker embedding train-
ing relies on simple augmentations such as additive noise or
simulated reverberation. Thus, while the conventional self-
supervised speaker embedding systems can yield minimum
within-utterance variability, their capability to generalize to
out-of-set utterance is limited. In order to alleviate this prob-
lem, we investigate the utilization of the instance mix (i-mix)
regularization for training a self-supervised speaker embed-
ding system. Moreover, we propose a new mixup strategy that
applies i-mix on the latent space, instead of the raw acous-
tic feature domain. The proposed method was evaluated on
the VoxCeleb1 dataset and showed noticeable performance
improvement over the standard self-supervised embedding
method.

Introduction
Speaker verification is the task of verifying the claimed
speaker identity based on the given speech samples and
has become a key technology for personal authentication in
many commercial, forensics and law enforcement applica-
tions (Hansen and Hasan 2015). Commonly, utterance-level
fixed-dimensional vectors (i.e. embedding vectors) are ex-
tracted from the enrollment and test speech samples and then
fed into a scoring algorithm (e.g., cosine distance, proba-
bilistic linear discriminant analysis) to measure their sim-
ilarity or likelihood of being spoken by the same speaker.
Classically, the i-vector framework has been one of the most
dominant approaches for speech embedding (Dehak et al.
2011), (Kenny 2012). The widespread popularity of the i-
vector framework in the speaker verification community can
be attributed to its ability to summarize the distributive pat-
tern of the speech with a relatively small amount of training
data in an unsupervised manner.

In recent years, various methods have been proposed
utilizing deep learning architectures for extracting embed-
ding vectors and have shown better performance than the i-
vector framework when a large amount of training data with
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enough diversity is available (Snyder et al. 2018). In (Snyder
et al. 2018, 2017), a speaker recognition model consisting of
a time-delay neural network (TDNN)-based frame-level net-
work and a segment-level network was trained and the hid-
den layer activation of the segment-level network, denoted
as x-vector, was extracted as the embedding vector. In (De-
splanques, Thienpondt, and Demuynck 2020), an ECAPA-
TDNN architecture was proposed, which has shown state-
of-the-art performance by introducing residual and squeeze-
and-excitation (SE) components to the widely used TDNN-
based embedding system. Although the deep embedding
methods have outperformed the i-vector framework in var-
ious speaker verification benchmarks, since most of these
models are trained in a fully supervised fashion, they require
a large amount of speaker labeled dataset for optimization.

To overcome this limitation, a number of self-supervised
embedding learning methods for deep speaker verification
were proposed over the past couple of years (Huh et al.
2020; Mun et al. 2020; Ding, He, and Wan 2020; Zhang,
Zou, and Wang 2021). Many of these researches employ the
contrastive learning scheme for optimization, where the em-
beddings from the same utterance (positive pairs) are trained
to be close to each other while pushing away embeddings
from different utterances (negative pairs). In order to effec-
tively capture the utterance-dependent variability into the
embedding, different types of augmentations are usually ap-
plied to the positive pair utterances. However, since speaker-
dependent information can be easily distorted under severe
augmentation, most speaker embedding training relies on
simple augmentations such as noise/reverberation mixing
(Huh et al. 2020) or frequency-/time-masking (Ding, He,
and Wan 2020). Due to this constraint, while the augmen-
tation can help minimize the within-utterance variability, its
capability to generalize to out-of-set utterances is limited.

One way to mitigate this is to employ mixup regular-
ization technique, which creates new data by linearly in-
terpolating two training samples (Zhang et al. 2017). De-
spite its simple formulation, mixup have shown promising
performance in various tasks including image classification
(Zhang et al. 2017), supervised speaker recognition (Zhu,
Ko, and Mak 2019), and anti-spoofing (Tomilov et al. 2021).
However, since the mixup strategy requires interpolation on
labels, it cannot be directly applied to self-supervised learn-
ing scenarios. Therefore, the instance mix (i-mix) regular-



ization was proposed, which expands the mixup formulation
to apply interpolation on the pseudo-labels (Lee et al. 2021).
The i-mix framework has shown potential in not only image
classification (Lee et al. 2021), but also in some audio tasks
(e.g., sound classification) (Niizumi et al. 2021).

In light of this, we explore the adaptation of i-mix aug-
mentation scheme to the self-supervised embedding learning
for speaker verification. Unlike the conventional augmenta-
tions for self-supervised speaker verification, which simply
augment the waveform or spectrogram of the speech by in-
troducing adversaries via masking or additive noise, the i-
mix scheme aims to create a synthetic training sample with
a new target identity by interpolating different samples along
with their utterance identity. Therefore the i-mix strategy can
efficiently enhance the generalization of the self-supervised
speaker representation learning process, which will enable
the network to produce robust embeddings which can per-
form well on verifying out-of-set speakers.

Moreover, we propose a new mixup strategy that applies
i-mix on the latent space instead of the raw data domain. Un-
like the previous attempts in applying mixup on the hidden
representations trained jointly with the downstream network
(Verma et al. 2019; Chen et al. 2020), we aim to extract the
latent representations with no context of the speaker. This
way, applying i-mix on the latent representation may intro-
duce not only new speakers, but also new non-speaker vari-
abilities (e.g., channel, environment). In order to apply i-mix
on the latent space of the speech, we incorporate a vari-
ational autoencoder (VAE) encoder (Kingma and Welling
2014) to extract the latent variable of the given acoustic fea-
tures. The mixed latent variable is fed into the VAE decoder
to generate a synthetic sample, which will have different pat-
tern from the samples generated via the standard i-mix strat-
egy.

The contributions of this paper are as follows:

• We incorporate the i-mix framework to the self-
supervised angular prototypical objective function for
speaker embedding learning.

• We propose a latent space i-mix strategy (l-mix), which
performs i-mix on the latent space of the speech.

• We compare the speaker verification performances of
systems trained with different i-mix and l-mix hyperpa-
rameters.

Related work and Baseline model
Baseline self-supervised representation learning
Most recent self-supervised embedding learning methods
use contrastive loss to produce embedding vectors with max-
imum utterance discriminability (Huh et al. 2020; Mun et al.
2020; Ding, He, and Wan 2020; Zhang, Zou, and Wang
2021). As shown in Figure 1, in the self-supervised con-
trastive embedding learning framework, two samples are
generated per utterance by applying different augmenta-
tions. The augmented samples are then passed through an
embedding network to generate embedding vectors. The net-
work is optimized via contrastive learning (e.g., prototypi-
cal loss), which minimizes the distance between the embed-

Figure 1: The general framework for the self-supervised
contrastive speaker embedding learning.

dings from the same utterance, while maximizing the dis-
tance between different utterance embeddings.

Embedding network In our research, we have exper-
imented with the ECAPA-TDNN encoder (Desplanques,
Thienpondt, and Demuynck 2020), an architecture that
achieved state-of-the-art performance in text-independent
speaker recognition. The ECAPA-TDNN uses squeeze-and-
excitation along with channel- and context-dependent statis-
tics pooling and multi-layer aggregation. The embedding
network takes the acoustic feature as input and outputs
the frame-level representations. The network outputs are
aggregated via self-attention pooling, which computes the
weighted average of the frame-level representations to ob-
tain an utterance-level fixed dimensional embedding vector.

Angular prototypical objective In order to train the em-
bedding network with no speaker labels, we have used an
utterance-discriminative contrastive loss, more specifically
the angular prototypical loss function (Zhang, Zou, and
Wang 2021), (Huh et al. 2020). Given a batch of prototype
embedding vectors ω1

i and query embeddings ω2
i , where ωk

i

indicates the embedding extracted from the ith utterance
Xi applied with augmentation #k, the angular prototypical
function is defined as follows:

LAP = − 1

N

N∑
i=1

log
exp(cos(ω1

i , ω
2
i ))∑N

j=1exp(cos(ω
1
i , ω

2
j ))

, (1)

where cos represents the cosine similarity operation. Equa-
tion 1 can be interpreted as the cross-entropy loss which
aims to maximize the similarity between the embeddings ex-
tracted from the same utterance, while minimizing the simi-
larity between different utterance embeddings.

Speech augmentation For training the embedding net-
work via angular prototypical objective, we have used
waveform-level data augmentations including additive noise
and room impulse response (RIR) simulation (Snyder et al.
2018). In addition to the waveform-level augmentations,
we have also applied augmentation over the extracted Mel-
frequency cepstral coefficient (MFCC) feature, denoted here



Figure 2: The general framework for the i-mix angular pro-
totypical learning.

Figure 3: Beta distributions with different α value.

as cepsaugment, which is similar to specaugment scheme of-
ten used for automatic speech recognition (ASR) (Park et al.
2019). Analogous to the specaugment, in cepsaugment, a
randomly selected time-cepstral bin is selected and masked
before being fed into the embedding network.

Instance mix (i-mix) regularization strategy
The i-mix is a data-driven augmentation strategy for im-
proving the generalization of the learned representation (Lee
et al. 2021). For arbitrary objective function Lpair(x, y),
where x is the input sample and y is the corresponding
pseudo-label, given two data instances (xi, yi) and (xj , yj),
the i-mix loss is defined as follows:

Li−mix
pair ((xi, yi), (xj , yj))

= Lpair(λxi + (1− λ)xj , λyi + (1− λ)yj),
(2)

where λ ∼ Beta(α, α) is a mixing coefficient. For cross-
entropy-based Lpair, such as prototypical loss, equation 2
can be rewritten as,

Li−mix
pair ((xi, yi), (xj , yj))

= λLpair(xi, yi) + (1− λ)Lpair(xj , yj).
(3)

i-mix angular prototypical objective
In this paper, we integrate the angular prototypical loss
and the i-mix strategy for robust self-supervised embedding
learning. More specifically, as depicted in Figure 2, we pro-

pose to perform i-mix on the prototype embedding vectors:

Li−AP = −λ
1

N

N∑
i=1

log
exp(cos(ωmix(i,r ̸=i), ωi))∑N
j=1exp(cos(ωmix(i,r ̸=i), ωj))

− (1− λ)
1

N

N∑
i=1

log
exp(cos(ωmix(i,r ̸=i), ωr ̸=i))∑N

j=1exp(ωmix(i,r ̸=i), ωj))
,

(4)

where ωr ̸=i is an embedding randomly sampled from the
batch [ω1, ω2, ..., ωN ] excluding ωi, and ωmix(i,r ̸=i) is an
embedding extracted from mixed utterance λXi + (1 −
λ)Xr ̸=i.

Training the embedding network with the i-mix angu-
lar prototypical objective Li−AP can be thought of as op-
timizing the network on a out-of-set utterance Xmix =
λXi + (1 − λ)Xr ̸=i, which retains utterance-dependent at-
tributes from both Xi and Xr ̸=i. Hence the resulting em-
bedding vector can generalize well on samples that are not
included in the training dataset.

Analogous to the standard i-mix described in equation 3,
we also use λ randomly sampled from Beta(α, α). As de-
picted in Figure 3, the shape of the Beta(α, α) distribution
varies heavily depending on the α, and resulting lambda de-
cides the expected behavior of the utterance interpolation
λXi + (1 − λ)Xr ̸=i. For example, for α < 1.0, the beta
distribution is U-shaped, thus the sampled λ is likely to have
value close to 1.0 or 0.

On the other hand, using α > 1.0 creates a bell-shaped
beta distribution, which is similar to a Gaussian distribution
with mean 0.5. The λ sampled from this distribution is likely
to have value near 0.5, hence in the interpolation process,
the two utterances will be added with similar power-level.
Such overlapping speech samples are known to be challeng-
ing for the speaker recognition system, even for speakers ob-
served during training (Tran and Tsai 2020). Therefore, us-
ing α > 1.0 may hinder the learning capacity of the embed-
ding networks, thus resulting in an embedding vector with
insufficient speaker-dependent information.

Latent space mix (l-mix) angular prototypical
objective

Although applying mixup augmentation to the raw data have
proven its strength in generalization in many tasks (e.g.,
speech recognition, image classification), there is still room
for improvement when it comes to speaker recognition. For
speaker recognition, the main purpose of the mixup strategy
is to let the speaker embedding system generalize to unseen
speakers. However, due to the nature of speech, the samples
created by mixup are likely to be very unrealistic in terms
of speech production. For example, simply weighted sum-
ming two speech samples will create a speech sample with
two speakers talking over each other, instead of creating a
speech sample with speaker similar to both speakers. As this
will introduce adversaries to the training sample, it will help
make the system robust. But in terms of learning the mani-
fold of the speech distribution, the effect of standard mixup
strategy could be limited.



Figure 4: The general framework for the proposed latent
space i-mix (l-mix) angular prototypical learning.

In order to overcome this limitation, we propose an i-mix
strategy applied to the latent space of speech (l-mix). Since
the latent variable of speech will include essential, disen-
tangled information of various speech attributes, we assume
that mixing up on latent variables will create a more realistic
speech sample. Moreover, unlike the standard i-mix frame-
work, which creates new samples within the line between
the raw acoustic features, as the proposed l-mix interpolates
on the latent space, we expect the synthetic samples created
by the l-mix strategy to be much diverse.

Similar to the VarMixup proposed for image classification
(Mangla et al. 2021), we use a VAE for extracting the latent
variable from the given MFCC. Before training the embed-
ding system, given training MFCC x, the VAE is trained ac-
cording to the following objective:

LV AE = DKL(qϕ(z|x)||pθ(z))−Eqϕ(z|x)[logθ(x|z)], (5)

where z is the latent variable, ϕ is the encoder parameter and
θ is the decoder parameter. The VAE is composed of two net-
works: encoder and decoder networks. The encoder network
takes the MFCC sample as input and generates the mean and
log-variance of the posterior latent distribution qϕ(z|x), as-
suming that the latent variables have Gaussian distributions.
The decoder network takes a latent sample and reconstructs
the MFCC. In our experiments, we set the latent prior pθ(z)
to be a standard normal distribution.

Once the VAE has been trained, we use the VAE to per-
form mixup on the latent space. Since the latent variables
of the VAE are assumed to have a Gaussian distribution, the
mixed-up latent variable will have a Gaussian distribution as
well. For example, given two latent variables z1∼N(µ1, σ

2
1)

Table 1: Architecture for the variational autoencoder (VAE)
used for extracting the latent variable from the MFCCs.

Layer # Encoder Decoder

1 3×3 2D-Conv, 32 ReLU, stride 3 64×32 FC
2 3×3 2D-Conv, 64 ReLU, stride 3 3×3 2D-TransposedConv, 32 ReLU, stride 3
3 3×3 2D-Conv, 32 ReLU, stride 3 3×3 2D-TransposedConv, 64 ReLU, stride 3
4 3×3 2D-Conv, 32 ReLU, stride 3 3×3 2D-TransposedConv, 32 ReLU, stride 3
5 32×64 FC for each µ and logσ2 3×3 2D-TransposedConv, 1 ReLU, stride 3

and z2∼N(µ2, σ
2
2), the mixup between them will result in:

zmix = λz1 + (1− λ)z2

∼N(λµ1 + (1− λµ)2, λ
2σ2

1 + (1− λ)2σ2
2),

(6)

where λ ∼ Beta(α, α). The mean of the mixed up latent
variable zmix is fed into the decoder network to generate an
MFCC sample xl−mix.

The decoder generated MFCC samples are then fed into
the embedding network to generate an embedding vector
ωl−mix, and we can train the embedding network using the
same formulation with Equation 4:

Ll−AP = −λ
1

N

N∑
i=1

log
exp(cos(ωl−mix(i,r ̸=i), ωi))∑N
j=1exp(cos(ωl−mix(i,r ̸=i), ωj))

− (1− λ)
1

N

N∑
i=1

log
exp(cos(ωl−mix(i,r ̸=i), ωr ̸=i))∑N

j=1exp(ωl−mix(i,r ̸=i), ωj))
.

(7)

The general framework of the proposed latent space i-mix
learning is depicted in Fig. 4.

Experiments
Experimental setup
In order to evaluate the performance of the proposed tech-
nique for self-supervised speaker verification, a set of ex-
periments were conducted based on the VoxCeleb2 dataset
(Chung, Nagrani, and Zisserman 2018). For training the
embedding networks, we used the development subset of
the VoxCeleb2 dataset, consisting of 1,092,009 utterances
collected from 5,994 speakers. The evaluation was per-
formed according to the original VoxCeleb1 trial list (Na-
grani, Chung, and Zisserman 2017), which consists of 4,874
utterances spoken by 40 speakers.

The acoustic features used in the experiments were 40-
dimensional MFCCs extracted at every 10 ms, using a 25
ms Hamming window via Kaldi toolkit (Povey et al. 2011).
The embedding networks are trained with segments consist-
ing of 180 frames, using the ADAM optimization technique
(Kingma and Ba 2015).

For the l-AP training, we have trained a convolutional
VAE with 5 layered encoder and decoder networks, where
each layer is configured as described in Table 1. The detailed
information on the implementation of this VAE is described
in (Ha and Schmidhuber 2018). The VAE was trained for
100 epochs on the VoxCeleb2 dataset with learning rate
0.001.



(a) MFCC of utterance X1.

(b) MFCC of utterance X2.

(c) Synthetic MFCC created via i-mix.

(d) Synthetic MFCC created via l-mix.

Figure 5: MFCCs of training utterances X1 and X2, and syn-
thetic samples created via applying i-mix and l-mix strategy
on them with λ = 0.503457.

All the experimented networks were implemented via
PyTorch, based on the voxceleb-unsupervised open-source
project (Huh et al. 2020)1. The networks were trained with
initial learning rate 0.001 decayed with ratio 0.95 for 150
epochs, and the models from the best performing checkpoint
were selected. The batch size for training was set to be 200.
Cosine similarity was used for computing the verification
scores in the experiments.

Experimental results
Analysis on synthetic samples In this section, we ana-
lyze the difference between synthetic MFCC samples gen-
erated via i-mix and l-mix. Figure 5 depicts the MFCCs of
two training utterances and the synthetic MFCCs created us-
ing i-mix and l-mix strategy. As shown in the figure, even
when using the same mixup coefficient (λ = 0.503457),
the l-mix strategy is able to create a different sample from
the i-mix augmentation. This is more apparent in Figure 6,
which depicts the euclidean distance of the synthetic sam-
ples from the line between their respective original sample
pair on the utterance-level MFCC supervector space (which
concatenates the frame-level MFCC features. From this fig-
ure, it could be seen that the i-mix synthetic MFCCs are very

1https://github.com/joonson/voxceleb unsupervised

Figure 6: The euclidean distances between the MFCCs gen-
erated using i-mix or l-mix and the line defined by the train-
ing MFCCs X1 and X2. For each sample, the same λ, X1,
and X2 were used for generating both i-mix and l-mix.
Lower distance indicates that the synthetic MFCC is closer
to the line between the original MFCCs.

close to the line between the original MFCCs, which is a
natural behaviour as the i-mix samples are created via linear
interpolation.

On the other hand, the l-mix synthetic samples are gener-
ated with more diversity, which are not necessarily created
near the line between the original samples. Attributed to this,
we can assume that the l-mix will enable the network to gen-
eralize better as it will generate samples with more variabil-
ity. While both i-mix and l-mix strategies are able to create
new samples unobserved in the training set, they create dis-
tinctive samples from each other due to the different levels
they apply interpolation on. From this observation, we can
assume that training the system with both i-mix and l-mix
synthesized samples can improve the generalization over the
system trained with a single type of mixup strategy.

Speaker verification performance comparison between
systems trained with different augmentations In this
section, we compare the ECAPA-TDNN-based self-
supervised systems with different mixup regularizations and
conventional systems trained with contrastive loss functions.
As depicted in Table 2, it could be noticed that even when
using the same angular prototypical objective, the perfor-
mance differs depending on the type of augmentation ap-
plied to the input audio. For example, using cepsaugment
with waveform-level augmentation was able to outperform
the ECAPA-TDNN system trained with only waveform-
level augmentation with a relative improvement of 0.31% in
terms of EER. This reassures that the selection of data aug-
mentation method is important for obtaining optimal self-
supervised embedding vectors.

On the other hand, the i-mix angular prototypical objec-
tive was able to improve the performance in all augmen-
tation settings (i.e., waveaug, waveaug+cepsaug). In most



Table 2: EER (%) comparison between the embedding net-
works trained with different augmentations and objectives.

Augmentation Objective EER [%]

Human Benchmark (Huh et al. 2020) 15.7700

None
i-vector (Huh et al. 2020) 15.2800

AP (FastResNet34) (Huh et al. 2020) 25.3700

waveaug
GCL (ResNet18) (Inoue and Goto 2020) 15.2600

AP (FastResNet34) (Huh et al. 2020) 11.6000

waveaug

AP 11.6384
i-AP (α = 0.5) 11.9618
i-AP (α = 1.0) 11.2407

i-AP (α = 32.0) 11.8240
l-AP (α = 0.5) 11.8876
l-AP (α = 1.0) 10.7741

l-AP (α = 32.0) 11.7179

waveaug
+cepsaug

AP 11.6013
i-AP (α = 0.5) 10.6257
i-AP (α = 1.0) 10.9279

i-AP (α = 32.0) 12.1633
l-AP (α = 0.5) 10.4931
l-AP (α = 1.0) 10.5408

l-AP (α = 32.0) 11.8399

cases, i-AP with α = 0.5, 1.0 outperformed AP, while
α = 32.0 hindered the performance. Especially in ECAPA-
TDNN with waveaugment and cepsaugment, i-AP (α = 0.5)
outperformed AP with a relative improvement of 8.41% in
terms of EER. This shows that with the right choice of α, the
self-supervised embedding network can be improved signif-
icantly via incorporating i-mix regularization to the objec-
tive.

While instance mixup on data-level (i-AP) showed
promising results, the proposed latent-level instance mixup
(l-AP) was able to further enhance the performance in all
augmentation settings. Analogous to the i-AP results, in
most cases l-AP was found to be beneficial to the system
with α = 0.5, 1.0. The best performance was observed
from ECAPA-TDNN with waveaugment and caepsaugment
trained via l-AP (α = 0.5), which outperformed AP with a
relative improvement of 9.55% in terms of EER. Such im-
provement may be attributed to the l-APs larger capability
in generalization, which we have observed from Figure 6.

Conclusion
In this paper, we investigated the utilization of the i-mix reg-
ularization for self-supervised speaker embedding learning
in order to increase the generalization of the embedding vec-
tors on out-of-domain utterances. Furthermore, we proposed
l-mix, a mixup strategy that applies i-mix on the latent space,
instead of the raw MFCC feature domain.

In order to evaluate the i-mix and l-mix strategies, we have
conducted several experiments on the VoxCeleb dataset. Our
results showed that both i-mix and l-mix can significantly
improve the generalization of the self-supervised embed-
dings with the right choice of hyperparameters, hence out-
performing the systems trained with the standard angular

prototypical objective. The best performance was observed
when using l-mix along with wave-level augmentation and
cepsaugment, which outperformed the system trained with
standard angular prototypical objective with a relative im-
provement of 9.55% in terms of EER.

In our future study, we will be investigating the poten-
tial of l-mix strategy in self-supervised speaker verification
more in-depth, by applying l-mix into different types of self-
supervised objective functions else than angular prototypical
loss. Moreover, as our proposed l-mix is essentially an i-mix
performed on latent space, it still relies on linear interpola-
tion when mixing samples. Although linear interpolation is
a viable method in image domain, such interpolation may
not be optimal for speech spectral features as the amount
of speaker-dependent information greatly differs depending
on the frequency or quefrency region. In order to tackle this
issue, we will further expand the l-mix technique, by formu-
lating a more speech-adequate and sophisticated method for
mixing samples on the latent level.
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